手机浏览器扫描二维码访问
由此,不断的类推下去。
那么,就可以最终推论出全体自然数N,便是以0到n-1,共计拥有n个元素的集合。
即:N={0,1,2,3……n-1}
而全体自然数即便进行过再定义后,再结合【子集】关系,也仍然会是一个良序集。
因为,其符合【序数理论】的种种条件。
到了这一步后,就可以考虑在全体自然数集的【末尾】,再加入一个元素了。
然后……等一等!
有没有发现一个规律,关于构造自然数的规律。
即是每一个自然数在被构造出来后,其实都是将前一个自然数【自身】,作为一个元素,加入到其【自身】的集合之中。
想一想,1、2、3、4……是不是都是如此。
是的,确实如此。
所以,现在如果将全体自然数集合本身,作为一个元素,加入到自然数集合中,会得到什么呢?
试一试。
很多时候,人们都惯常性的将自然数集合,记作N。
不过,在序数理论体系中,全体自然数集合,则通常会被记作为ω。
因此,ω就可以={0,1,2,3……n}
那么,如果将ω加入到自身集合中,即是:{0,1,2,3……n……ω}
所以这个集合,良序吗?
是的,它是良序集,货真价实。
因为在其之中的任何两个元素,都可以进行大小比较。
并且ω之中,包含了所有其他元素,其他所有元素也都是ω的子集。
所以ω在排序之时,就应该排在最后。
毫无疑义。
总之,〖在全体自然数末尾添加一个元素〗这一操作,此刻终于成功了。
对于ω的突破,也终于成功了。
而通过这种操作所得到的新超限序数,也就是前面的那个{0,1,2,3……n-1……ω}。
即是,ω+1。
注意,这里的+1不是加了一个自然数1,那是纯纯的两码事。
同时ω,也不能简单的用加减乘除四则运算来折腾,那是大错特错。
因为集合序数的和,是在两个良序集的无交并上定义一定良序关系后所定义的。
另外,在得到ω+1这一无法与自然数集建立一一对应这种次序关系的更大的超限序数后。
便可以通过复现先前ω加入自身得到ω+1的操作,来得到ω+2。
再将ω+2加入自身,来得到ω+3。
不断重复这种操作,便可以得到ω+4、ω+5、ω+6、ω+7……
以此类推,最终在进行了无穷多次这类操作后,就可以到达这条无穷复无穷之路的极限——ω+ω。
也就是,ω·2。
ω,可称之为第一重无限,ω·2则可称为第二重无限。
二者的差距从某种意义上来说,用单薄的‘无穷’二字都不足以形容。
另外要注意,ω·2≠2×ω。
ω·2,是等于ω+ω,也等于ω×2。
言安希醉酒后睡了一个男人,留下一百零二块钱,然后逃之夭夭。什么?这个男人,竟然是她未婚夫的大哥?一场豪赌,她被作为赌注,未婚夫将她拱手输给大哥。慕迟曜是这...
千万年前,李七夜栽下一株翠竹。八百万年前,李七夜养了一条鲤鱼。五百万年前,李七夜收养一个小女孩。今天,李七夜一觉醒来,翠竹修练成神灵,鲤鱼化作金龙,小女孩成为九界女帝。这是一个养成的故事,一个不死的人族小子养成了妖神养成了仙兽养成了女帝的故事。...
人族少年叶寒,身怀神秘功法天帝诀,入大世界中,与群雄争霸,观万族并起!天地苍茫,今朝我主沉浮!小说关键词万古天帝无弹窗万古天帝txt全集下载万古天帝最新章节阅读...
婚后情人节,韩经年问今天怎么过?夏晚安搂着被子,昏昏欲睡的答睡觉。圣诞节,韩经年问今天怎么过?夏晚安抱着枕头,漫不经心的答睡觉。结婚纪念日,韩经年端着一杯水问今天怎么过?夏晚安窝在床上,懒洋洋的睁开了眼睛,警惕的盯着韩经年随时会泼到床上的水思考了三秒,回和你一起。...
他曾是圣殿国王,四大洲只手遮天,却因心爱女人的背叛,险些命丧黄泉。为复仇,他踏上回归路。在酒吧昏暗的角落,有佳人绝色,一个精彩纷呈的故事,就此展开...
心潮澎湃,无限幻想,迎风挥击千层浪,少年不败热血!...
宁芝作为大晋朝第一奸臣世家嫡女,风光无限。无他,便是这半壁江山都要仰仗宁家,纵然是皇家最尊贵任性的二皇子裴珩,也只能忍着。 宁芝笑着二殿下,不如你我豪赌一场如何?输了,我嫁给你。若是赢了么,不仅是我主天下,连二殿下的人,心,也都一并是我宁芝的,如何? 裴珩嗤之以鼻,一个小女子也敢要帝位么?就陪她赌一场又如何?他还能输了不成?总要叫她知道厉害!...